

serec

swiss electromagnetics research & engineering centre

What makes renewables special?

Dr. Rainer Bacher, BACHER ENERGIE AG rainer.bacher@bacherenergie.ch

ETHZ, 09. November 2012

serec

swiss electromagnetics research & engineering centre

What makes renewables special? (Dr. Rainer Bacher, Bacher Energie AG)

When many renewable sources feed electricity into the distribution grid, the grid is exposed to a great number of electricity producers, each with its own special properties which traditionally may not have been experienced before. The overall grid based system needs to continue to provide a functionality considering, amongst others, the local and mass effects of these special grid connected devices. This is a systems challenge.

Intro	System	Serec swiss electromagnetics research & engineering centre	Balancing + Grid	Conclu- sion

The new electricity system: Renewable electricity infeed, Flexible consumers, Changed grid structures, Storage, new Monitoring and control, new user behavior

Intro	System	serec swiss electromagnetics research & engineering centre	Balancing + Grid	Conclu- sion

Grid: Each user is connected to a grid level

Producer (renewable)

- NE 1: Water storage power
 - NE 3: run of river power
 - NE 5 (und 3): Wind power
 - NE 7 (und 5): PV-producer

Consumer

SmartGrids

- NE 5 und 3: Industry
- NE 7: Households and services

Intro

System

swiss electromagnetics research & engineering centre

Balancing + Grid Conclusion

Typical N7 low voltage grid

 SmartGrids

 En

 Bacher

 gie

 BACHER ENERGIE AG, www.bacherenergie.ch, rainer.bacher@bacherenergie.ch, +41 56 493 49 30

 Nov. 2012

 6

Intro	System	serec swiss electromagnetics research & engineering centre	Balancing + Grid	Conclu- sion
		· ·		

Requirements on grids: Dimensioning for secure handling of extreme situations (even outages)

Voltages and currents will change due to new distributed infeeds.

Intro	System	serec swiss electromagnetics research & engineering centre	Balancing + Grid	Conclu- sion

Balancing as key challenge with renewables

- Renewables change the pattern of generation during the hours of the day (seasonal)
- What part of total Swiss load can be covered by renewables? What part by other electricity infeeds?
- When during the year down to the day do we have intensified need for balancing power?

SmartGrids

Intro	System	Serec swiss electromagnetics research & engineering centre	Balancing + Grid	Conclu- sion

Scenario: Same as Year 2010/11

SmartGrid

Consumption 63 TWh/a incl Pumping and losses

But the future generation (2035 ... 2050) ...

- Hydropower like 2010: 39 TWh/a
- NEW: No nuclear power stations any more
- NEW: Electriticity production by PV: approx. 11 TWh/a with ca.
 10 GW maximum Peak-Power
- NEW: ca. 11 TWh/a further electricity production (Wind, Gas, Geothermie, WKK, Import)

gie BACHER ENERGIE AG, www.bacherenergie.ch, rainer.bacher@bacherenergie.ch, +41 56 493 49 30 Nov. 2012 10

Simulation Solar-PV-Infeed in 15-Minuten-Intervals

Intro	System	Serec swiss electromagnetics research & engineering centre	Balancing + Grid	Conclu- sion

The remaining hourly balance (11TWh/a still needed after Hydro and PV). (Draft Scenario)

SmartGrid

Bacher gie BACHER ENERGIE AG, www.bacherenergie.ch, rainer.bacher@bacherenergie.ch, +41 56 493 49 30 Nov. 2012 13

Bacher gie BACHER ENERGIE AG, www.bacherenergie.ch, rainer.bacher@bacherenergie.ch, +41 56 493 49 30 Nov. 2012 14

(Source background: VSE)

letzebene 6

letzebene 7

Netzebene 6

Netzebene

THE REAL OF

Ca. 10 GW

(estimation)

Lokale

Verteilnetze

bis <1 kV

1 bis 36 kV

Transformierung

Lokale Verteilnetze

bis <1 kV

Intro	System	serec swiss electromagnetics research & engineering centre	Balancing + Grid	Conclu- sion

Distribution grid capacity reserves today

- Radial distribution grids today: Only consumers are connected (and served)
 - Priority: easy planning by observing grid capacity reserves
 - Handling of outage of cables
 - In emergency case, use second infeed via a nearby-radial connection

➔ Today's distribution grid average loading: below 50%

En

Serec swiss electromagnetics research & engineering centre

The future distribution grid

Many distributed generators and flexible consumers

- New short-circuits, new currents, new voltages
- Known grid use patterns not present any more

Outage of cables

SmartGrid

- Much more complex situation
- Peak grid loading will be very different and hange in very short time: High sensitivity to the mount and types of electric cars and PV-Infeeds

Intro	Suctor	serec	Balancing +	Conclu-
	System	swiss electromagnetics research & engineering centre	Grid	sion

Conclusion: What makes renewables special? ... Many more issues ...

Specialties of enewables	Asset Management	Assets Economics	Legal / Policy	Security of Supply
Sustainability	Life time	Investment time	Market versus subsidy	Reliability, availability
Distributed property	Manage masses of prosumers	Investment size	Duties and rights of many involved	Central, hierarchy, distributed
Generation connected to LV grids	From reserves to assets use optimization	Who pays? Who profits?	Distribution grid use rules	Responsibilities
Hard to control	Kirchhoff and frequency	New Monitoring and control systems	Liability in case of blackouts	Stochastic reserve margins
Cause grid overloads	Asset lifetime, Asset access	Congestion revenue. Market participant risks	Congestion management rules	Capacity reserve versus incentives versus controls
Cause grid /oltage /iolations	Electrical (home) equipment functioning	Industrial voltage quality sensitivity	Rules for grid operator and grid users	Regional security monitoring and coordination
Many others				
En				

gie BACHER ENERGIE AG, www.bacherenergie.ch, rainer.bacher@bacherenergie.ch, +41 56 493 49 30 Nov. 2012 18